

Program Records

About the Program	The purpose of our graduate program is to inform multidisciplinary research perspective in materials science and nanotechnology, and to educate tomorrow's problem-solvers in light of increased competitiveness and new global challenges. Our approach in our graduate level training is to motivate students to conduct ground breaking research in materials science and nanotechnology. Our graduate program is conducted in English.
Program Outcomes	Advanced Materials and Nanotechnology graduate program provides students with the ability to access, analyze and evaluate knowledge/information in scientific research. The students will be equipped with the up-to-date practices, and use this knowledge in realizing experimental work based research activities in their scientific fields. They will develop new and/or original ideas and methods; design complex systems or processes and invent novel/alternative solutions in their designs. The students can communicate effectively in spoken and written English.
Qualification	Master's Degree
Awarded	
Length of Program	2 Years
& Credits	Full time
Level of Qualification	Full ume
Field of Study	Students who have completed the graduate program can work in various public
Tield of Study	institutions and organizations and in private sector on their related subject area.
Admission	Bachelor's diploma; Proof of English proficiency (YDS, YÖKDİL, TOEFL or Abdullah
Requirements	Gül University English Proficiency Exam); Have enough ALES grades stated by the
	program
GENERAL RULES	The Equivalency Table between 4.00 and 100 Grading Systems prepared by Council
	of Turkish Higher Education (YÖK) serves as the basis for GPA conversions.
	The ALES score of applicants who apply to a PhD program with only a bachelor's
	degree should be minimum 80 and their GPA should be minimum 3.00/4.00.
Recognition of Credit Mobility	Courses taken outside of the program could be transferred in accordance with the
cieuit Mobility	Examination Regulation rules by the respective management hoard
Recognition of	Courses taken outside of the program could be transferred in accordance with the
Credit Mobility	associated principals of the Abdullah Gul University Undergraduate Education and
	Examination Regulation rules by the respective managementboard.
Graduation	Student has to complete all courses in the program curriculum with a minimum GPA
Requirements &	of 3.00. 120 ECTS
Regulations	
Occupational	Our approach in our graduate level training is to motivate students to conduct
Profiles of	ground breaking research in materials science and nanotechnology. Our graduate
Graduates	program is conducted in English. Each candidate for the M.Sc. degree must submit a
	program consisting of courses and an original MSc thesis can be completed as early
	as by the end of three semesters
	Our graduates will be able to continue their doctoral and post-doctoral studies at
	AGU and the world-leading universities, and also will be able to work in many
	advanced technology companies both in our country and in the world.
Access to Further	Graduates with cumulative GPA of at least 3.00/4.00 graduate degree may apply
Studies	to PhD programm
Assessment &	Based on Abdullah Gul University Undergraduate Education and Examination
Grading Policy	Regulation rules;.
	Letter Coefficient Score Status Letter Letter Grade

Grade				Grade	
А	4.00	90-100	Pass	NA	Not Attended
A-	3,67	87-89	Pass	W	Withdrawn
B+	3,33	83-86	Pass	S	Satisfactory
В	3,00	80-82	Pass	U	Unsatisfactory
В-	2,67	77-79	Pass	Р	In Progress
C+	2,33	73-76	Pass	EX	Exempt
С	2,00	70-72	Pass		
С-	1,67	64-69	Conditional Pass		
D+	1,33	56-63	Conditional Pass		
D	1,00	50-55	Conditional Pass		
F	0,00	0-49	Failed		

Program Outcomes	P01	Accessing knowledge, evaluating and interpreting information by doing
		scientific research in the field of Materials Science and Nanotechnology
	P02	Ability to use science and engineering knowledge for development of new
		methods in Materials Science and Nanotechnology
	P03	To be able to understand and analyze materials by using basic knowledge
		on Materials Science and Mechanical Nanotechnology
	P04	Design and implement analytical, modeling and experimental research
	P05	Solve and interpret the problems encountered in experimental research
	P06	Considering scientific and ethical values during the collection and
		interpretation of data
	P07	Integrating knowledge of different disciplines with the help of scientific
		methods, and completion and implementation of scientific knowledge
		using data
	P08	To gain leadership ability and responsibility in disciplinary and
		interdisciplinary team works
	P09	To be able to contribute to the solution of social, scientific and ethical
		problems encountered in the field of Materials Science and
		Nanotechnology
	P010	To be able to define, interpret and create new information about the
		interactions between various discipline of Materials Science and
		Nanotechnology

TQF-HE & Program						Compe	tences	
Outcomes Coverage		Knowledge Theoretical Conceptual	Skill Cognitive Practical	Inde ar Resp	Work pendently nd Take ponsibility	Learning	Communication and Social	Field specifics
	P01	Х				Х		
	PO2	Х	Х					Х
	PO3	Х	Х		Х	Х		
	PO4				Х	Х		Х
	PO5				Х	Х		
	PO6	Х			Х			Х
	PO7	Х	Х		Х		Х	
	PO8				Х		Х	
	PO9	Х			Х		Х	
	PO10		Х				Х	Х
Institutional & Program		I01	102	103	104	105	106	107
Outcomes Coverage	P01	Х						Х
	PO2		Х	Х				
	PO3	X				Х		
	PO4	X	Х		Х			
	PO5			Х		Х	Х	Х
	PO6		Х		Х			
	PO7			Х		Х	Х	Х
	PO8		Х		Х	Х		
	PO9	Х					Х	
	PO10							

Course Descriptions

Codo	
	AMN 502
Name	Nanoscience and Nanotechnology
Hour per week	3 (3 + 0)
Credit 3	3
ECTS	7,5
Level/Year	Graduate
Semester	Fall/Spring
Туре	Compulsory
Prerequisites	The course has no specific prerequisites
Coordinator(s)	Assist. Prof. Dr. Ali DURAN
Description	This course aims to raise awareness about nano term, and present the
	fundamentals, present and future potentials of nanoscience and the latest
	developments in nano scale materials and devices. The course covers the following
	topics: The Fundamentals of Nanotechnology and Nanomaterials, The Basics of
	Nanocharacterization, Recent Applications of Nanotechnology, General Knowledge
	for Choosing Proper Processes, Materials and Technology for nanofabrication.

Code	AMN510
Name	Introduction to Biomaterials
Hour per week	3 (3 + 0)
Credit 3	3
ECTS	7,5
Level/Year	Graduate
Semester	Fall/Spring
Туре	Elective
Prerequisites	None
Coordinator(s)	Assist. Prof. Dr. Erkin Aydın
Description	This course intends to introduce the students with the broad field of biomaterials;
	teach them mechanical, chemical, and biological properties of various biomaterials
	classes; and provides fundamental knowledge about strategies of selection of
	biomaterials according to the various requirements of application site within the
	body
	The following topics are covered:

i. Characterization of materials

ii.	Metallic, poly	vmeric, cerami	c. and composite	e biomaterials
		,,	o, and compoore	0 01011101011010

- iii. Structural properties of materials and their effects on biomaterials properties
- iv. Tissue reaction against implants
- v. Biomaterials for soft tissue replacement
- vi. Biomaterials for hard tissue replacement
- Tissue engineering materials and regenerative medicine

Code	AMN560
Name	Controlled release and drug delivery
Hour per week	3 (3 + 0)
Credit 3	3
ECTS	7,5
Level/Year	Graduate
Semester	Fall/Spring
Туре	Elective
Prerequisites	None
Coordinator(s)	Assist. Prof. Dr. Erkin Aydın
Description	This course covers the basic concepts and approaches for controlled release and
	delivery of drugs. The following topics are covered:
	 i. Routes of application for classic and controlled drug delivery systems: Intravascular, oral, transdermal, transmucosal, and other routes. ii. Main examples for controlled drug release including membrane encapsulated reservoir devices, bioerodible polymers, matrix systems, polymers containing pendant drug substituents, and osmotic systems.
	iii. Nanocarriers: Types, design, and characterization of Lipid based-,inorganic-, polymeric-, and virus based nanocarriers
	iv. Use of nanoparticles in diagnosis and monitoring of diseases
	v. Delivery systems for siRNA, DNA, Proteins & Peptides
	vi. Drug targeting
	vii. Biodistribution, toxicology, EPR effect
	viii. Preclinical and clinical stage formulation examples

Code	AMN568
Name	Molecular Biology for Engineers
Hour per week	3 (3 + 0)
Credit 3	3
ECTS	7,5
Level/Year	Graduate

Name	Molecular Engineering and Soft Nanomaterials
Code	AMN542
	biotechnology, stem cell research, nanobiotechnology and ethics.
	biotechnology, animal biotechnology, antimicrobials and drug discovery, industrial
	following topics: History of biotechnology, molecular biology techniques, plant
	with the recent developments in the field of biotechnology. The course covers the
Description	This course introduces the fundamentals of biotechnology and updates students
Coordinator(s)	Assist. Prof. Dr. Aysun Cebeci Aydın
Prerequisites	None
Туре	Elective
Semester	Fall/Spring
Level/Year	Graduate
ECTS	7,5
Credit 3	3
Hour per week	3 (3 + 0)
Name	Recent Topics in Biotechnology
Code	AMN575
	translation
	building blocks of the cell, genes, DNA replication, RNA, transciption and
Description	course content includes the following topics: History of molecular biology.
Description	The course aims to teach basic molecular biology to engineering students. The
Coordinator(s)	Assist. Prof. Dr. Aysun Cebeci Aydın
Prerequisites	None
Туре	Elective
Semester	Fall/Spring

Name	Molecular Engineering and Soft Nanomaterials
Hour per week	3 (3 + 0)
Credit 3	3
ECTS	7,5
Level/Year	Graduate
Semester	Spring
Туре	Elective
Prerequisites	One of the following Courses: General Chemistry, Organic Chemistry, Polymer
	Chemistry, Materials Science etc. (undergraduate level courses)
Coordinator(s)	Assoc. Prof. Dr. Hakan Usta
Description	This course focuses on the fundamentals of molecular engineering and soft

nanomaterials with strong emphasis on their applications in nanotechnology, optoelectronics, air/water cleaning, and renewable/clean energy solutions. The molecular engineering approach used in this course does not only teach the fundamentals for rational design of existing soft-nanomaterials but also provides the essential skills to design next-generation soft-nanomaterials for future applications. Topics include principles of carbon chemistry, rational molecular engineering, small molecules, polymers, macromolecules, nanoscience/nanotechnology, organic/printed optoelectronics, metal(covalent)organic frameworks, sustainability, and renewable/clean energy.

Code	AMN517
Name	Advanced Topics in Enzyme Science and Technology
Hour per week	3 (3 + 0)
Credit 3	3
ECTS	7,5
Level/Year	Graduate
Semester	Fall/Spring
Туре	Elective
Prerequisites	None
Coordinator(s)	Assist. Prof. Dr. Kevser Kahraman
Description	This course intends to focus on the technical use of enzymes in materials science
	and nanotechnology. It provides the theory and knowledge relevant to the enzyme
	technology principles including fundamental properties of enzymes, enzyme
	catalytic mechanisms and enzyme kinetics, enzyme production technology,
	isolation, purification and characterization. Techniques employed in enzyme
	immobilization and stabilization are also emphasized. This course aids to provide
	an awareness of the current and possible future applications of enzyme
	technologies.

Code	AMN535
Name	Membrane Separations in Aquatic Systems
Hour per week	3 (3 + 0)
Credit 3	3
ECTS	7,5
Level/Year	Graduate
Semester	Fall/Spring
Туре	Elective

Туре

Prerequisites

Elective

-

Prerequisites	None
Coordinator(s)	Assoc. Prof. Dr. Nigmet UZAL
Description	This course provides fundamental knowledge on membrane processes in aquatic
	systems. This course focuses on the application of membrane processes in
	municipal water treatment and reuse, and industrial wastewater treatment and
	reuse. The course covers the topics of; membrane materials, polymers and
	ceramic materials and their properties, membrane fabrication techniques,
	characterization of membrane morphology and their methods, type and structure
	of membranes.
Code	AMN 538
Name	Materials Science of Concrete
Hour per week	3 (3 + 0)
Credit	3
ECTS	7,5
Level/Year	Graduate
Semester	Springs
Туре	Elective
Prerequisites	-
Description	The course aims to provide comprehensive knowledge on materials science of
	concrete which is the most widely used construction material. The course covers
	the following topics;
	Manufacture, composition and specifications of Portland cement: Portland cement
	hydration; microstructure of concrete; fresh and hardened properties of concrete
	and testing; supplementary cementing materials and blended cements; chemical
	admixtures; concrete at early ages; durability issues of concrete.
Code	AMN 539
Name	Analytical Techniques in Concrete Technology
Hour per week	3 (3 + 0)
Credit	3
ECTS	7,5
Level/Year	Graduate
Semester	Spring

Description	The course aims to provide comprehensive knowledge on the cutting-edge
	analytical techniques and procedures used to test and examine concrete and
	concrete-making materials. The course covers the following topics; Chemical,
	mineralogical and physical characterization of Portland cement and
	supplementary cementing materials (wet chemical analysis , XRF, XRD and laser
	diffraction techniques); rheological analysis of fresh mixtures of cement pastes,
	mortar and concrete; techniques for characterization of hardened cement paste,
	mortar and concrete samples: thermal analyses, XRD, SEM and mercury intrusion
	porosimetry.

Code	AMN557
Name	Dietary Fiber and Bioactive Food Components
Hour per week	3 (3 + 0)
Credit 3	3
ECTS	7,5
Level/Year	Graduate
Semester	Fall/Spring
Туре	Elective
Prerequisites	None
Coordinator(s)	Assist. Prof. Dr. Kevser Kahraman
Description	This course offers the students an overview of the physiological and nutritional
	function and health benefits of dietary and bioactive food components. It provides
	the fundamental concepts and knowledge related to dietary fiber and bioactive
	components of foods, the role of of fibers and bioactive food components and
	prebiotics in promoting health, the determination methods of dietary fiber,
	resistant starch and bioactive food components. This course covers the following
	topics: Types and sources of dietary fiber; Fiber fermentation, prebiotics &
	probiotics; Recent developments in the production and application of dietary
	fiber; Resistant starch and health effects of resistant starch; Dietary fiber
	determinations methods; Effect of dietary fiber on Glycemic index (GI);
	Determination of GI of foods in-vitro; Bioactive food components; Antioxidant
	activity determination methods; Nutraceuticals and Functional Foods and
	Regularoty aspects and health claims related to fiber enrichment

Code	AMN580
Name	Advanced Food Chemistry
Hour per week	3 (3 + 0)

Credit	3
ECTS	7,5
Level/Year	Graduate
Semester	Fall/Spring
Туре	Elective
Prerequisites	NA
Coordinator(s)	Assist. Prof. Dr Kevser Kahraman
Description	This course offers students an overview of the chemical and physical properties of
	the major and minor food components and their changes during processing,
	handling and storage. This course will also provide deep information on the
	relationship between the chemical structure of the food components and the
	reactions occurring in food in those stages. The course covers the following topics:
	Fundemantals of Food Chemistry, Physical and Chemical Properties of Water,
	Carbohydrates including simple sugars, sugar derivatives, oligosaccharides,
	polysaccharides, dietary fibers, proteins (physical and functional properties),
	Lipids and Enzymes.

Code	AMN574
Name	Computational Materials Science
Hour per week	5 (3 + 2)
Credit	3
ECTS	7,5
Level/Year	Graduate
Semester	Fall/Spring
Туре	Elective
Prerequisites	Knowledge of lunix/unix operating system
Coordinator(s)	Prof. Dr. Murat Durandurdu
Description	The aim of this course is to provide the theory, methods, and applications of
	quantum mechanical software SIESTA used for computational study of materials.
	This course covers the applications of Density Functional Theory on crystals,
	disordered materials and nanomaterials, calculations of their electronic and
	mechanical properties, modeling amorphous materials and studying
	temperature/pressure induced phase transformations.

Code	AMN541
Name	Modern Physics
Hour per week	3
Credit	3
ECTS	7,5
Level/Year	Graduate
Semester	Fall/Spring
Туре	Elective
Prerequisites	None
Coordinator(s)	Prof. Dr. Murat Durandurdu
Description	This course offers an introduction to our modern understanding of nature at the
	atomistic level. Topics include Einstein's special theory of relativity, the theory of
	quantum mechanics, wave-particle duality, the nature of atoms, statistical
	mechanics and solid-state physics.

Code	AMN555
Name	Quantum Mechanics
Hour per week	3
Credit	3
ECTS	7,5
Level/Year	Graduate
Semester	Fall/Spring
Туре	Elective
Prerequisites	None
Coordinator(s)	Prof. Dr. Murat Durandurdu
Description	The aim of this course is to introduce the concepts and techniques of the Quantum
	Mechanics, which has gained much importance in many scientific and engineering
	fields (materials science, nanotechnology and electronic devices). This course
	covers the basic principles of the Quantum Mechanics: wave properties,
	uncertainty principles, Schrödinger equation and operators and their basic
	applications such as one dimensional problems, central field problems, harmonic
	oscillator, angular momentum and perturbation theory.

Code	AMN521
Name	Solid State Physics
Hour per week	3
Credit	3
ECTS	7,5
Level/Year	Graduate
Semester	Fall/Spring
Туре	Elective
Prerequisites	None
Coordinator(s)	Prof. Dr. Murat Durandurdu
Description	The aim of this course is to provide the basic knowledge about the atomic structures of solids and to explain their physical and electrical properties using quantum theory. This course covers crystal structures, symmetries, Bragg diffraction, reciprocal lattice, brillouin zones, bondings, lattice vibrations: phonons, thermal properties, Einstein model, Debye model, Hall effect, free electron model, Fermi gas, semiconductors and fermi surfaces.